Detection of microaneurysms in retinal images using an ensemble classifier
نویسندگان
چکیده
This paper introduces, and reports on the performance of, a novel combination of algorithms for automated microaneurysm (MA) detection in retinal images. The presence of MAs in retinal images is a pathognomonic sign of Diabetic Retinopathy (DR) which is one of the leading causes of blindness amongst the working age population. An extensive survey of the literature is presented and current techniques in the field are summarised. The proposed technique first detects an initial set of candidates using a Gaussian Matched Filter and then classifies this set to reduce the number of false positives. A Tree Ensemble classifier is used with a set of 70 features (the most commons features in the literature). A new set of 32 MA groundtruth images (with a total of 256 labelled MAs) based on images from the MESSIDOR dataset is introduced as a public dataset for benchmarking MA detection algorithms. We evaluate our algorithm on this dataset as well as another public dataset (DIARETDB2) and compare it against the best available alternative. Results show that the proposed classifier is superior in terms of eliminating false positive MA detection from the initial set of candidates. The proposed method achieves an ROC score of 0.415 compared to 0.2636 achieved by the best available technique. Furthermore, results show that the classifier model maintains consistent performance across datasets, illustrating the generalisability of the classifier and that overfitting does not occur.
منابع مشابه
Detection of Microaneurysms in Retinal Angiography Images Using the Circular Hough Transform
This paper presents an automated method for detecting microaneurysms in the retinal angiographic images by using image processing techniques. In the presented method, in order to fade or remove the pseudo images, first retinal images are pre-processed. Then microaneurysms are identified by circular Hough transform. In the existing methods of dete...
متن کاملDetection of Microaneurysms in Retinal Angiography Images Using the Circular Hough Transform
This paper presents an automated method for detecting microaneurysms in the retinal angiographic images by using image processing techniques. In the presented method, in order to fade or remove the pseudo images, first retinal images are pre-processed. Then microaneurysms are identified by circular Hough transform. In the existing methods of dete...
متن کاملAutomatic Detection of Microaneurysms in Color Fundus Images using a Local Radon Transform Method
Introduction: Diabetic retinopathy (DR) is one of the most serious and most frequent eye diseases in the world and the most common cause of blindness in adults between 20 and 60 years of age. Following 15 years of diabetes, about 2% of the diabetic patients are blind and 10% suffer from vision impairment due to DR complications. This paper addresses the automatic detection of microaneurysms (MA...
متن کاملEarly Detection of Diabetic Retinopathy in Fluorescent Angiography Retinal Images Using Image Processing Methods
Introduction: Diabetic retinopathy (DR) is the single largest cause of sight loss and blindness in the working age population of Western countries; it is the most common cause of blindness in adults between 20 and 60 years of age. Early diagnosis of DR is critical for preventing vision loss so early detection of microaneurysms (MAs) as the first signs of DR is important. This paper addresses th...
متن کاملSimple hybrid method for fine microaneurysm detection from non-dilated diabetic retinopathy retinal images
Microaneurysms detection is an important task in computer aided diagnosis of diabetic retinopathy. Microaneurysms are the first clinical sign of diabetic retinopathy, a major cause of vision loss in diabetic patients. Early microaneurysm detection can help reduce the incidence of blindness. Automatic detection of microaneurysms is still an open problem due to their tiny sizes, low contrast and ...
متن کامل